Flash Memory Summit 2011 Notes and Comments

By Ron Dennison, Principal Consultant, Research Development Consultants Inc. 8/15/2011

Summary:
This was the largest FMS ever with 5 tracks on 2 of the 3 days. I attended a variety of them and my notes and comments on the ones I attended follow.

Some overall takeaways:
1. Cost is still the major issue limiting SSD adoption.
2. Reliability and endurance continue to be enterprise user concerns.
3. To address cost, MLC and even TLC (three level cell; 8 logic states) are on the SSD vendor’s roadmaps for the enterprise.
4. The controller and its FW continue to be the key to SSD functionality (there are still many shortcomings reported here) and lower cost using MLC and TLC NAND.
5. SSDs are an immature technology needing standards for testing, feature sets, operating systems, and reporting.
6. Automated Tiering and Caching SW are keys to adoption at both the client and enterprise level.
7. Several major SSD vendors have introduced enterprise class SSDs which run MLC flash well beyond the flash manufacturer’s endurance specification by using specialized signal processing and ECC methods in the controller.
8. To take full advantage of SSD performance potential, new interfaces and interface standards (some just emerging) are required along with new drivers.
9. As planar NAND flash technology scales to ever smaller nodes (1x already and soon 1y nm), a shift must be made to 3D structures (at 20 nm there are only about 10 electrons per state in the floating gate. TLC is 2x worse.) where there will initially be many 1000’s of electrons/state. Samsung, Toshiba and Micron are all well along on this.
10. Future technologies which challenge flash (RRAM, PCM, MRAM, etc.) are still many years away from taking the lead as flash goes 3D.

Session F1C
Enterprise SSDs

Badridine Khessib - Microsoft
SSDs in Large Scale Data Centers

Summary: Need application specific endurance, no throttling, and rich set of S.M.A.R.T. counters

Steve Hetzlers slide Relative $/Performance: Storage Chasm Dec 2008 from IDEMA
VLDB 2010 TPCTC Workshop formula to calculate SSD benefits:
HDD: IO is expensive
Cost\textsubscript{HDD} = IOPS\$/IOPSHDD + Power\textsubscript{HDD} \times \$/Watt

SSD: GB is expensive
Cost\textsubscript{SSD} = GB\$/GB\textsubscript{SSD} + Power\textsubscript{SSD} \times \$/Watt

For SSD to be viable: Cost\textsubscript{HDD} > Cost\textsubscript{SSD}
Or,
IOD * \$/IOPSHDD + PD\Delta * \$/Watt > \$/GB\textsubscript{SSD}

Where
IOD * \$/IOPSHDD + PD\Delta * \$/Watt > \$/GB\textsubscript{SSD}
IOD: IOPS/GB, workload dependent
\$/IOPSHDD: $1.24
PD\Delta: 0.01 Watt/GB
\$/Watt: $10
\$/GB\textsubscript{SSD}: $10.37 SLC & $3 MLC

Solve for IOD: IOD > 8.28 (SLC)
IOD > 2.34 (MLC)

But, Need to include endurance of SSDs
Cost\textsubscript{SSD} = GB*EF\$/GB\textsubscript{SSD} + Power\textsubscript{SSD} \times \$/Watt

EF (Endurance Factor): App 3-year Writes (GB)/SSD endurance
EF >= 1

Must add endurance factor which must be greater than 1!
Commodity Systems can use SSD for map/reduce, file system, ECN, web search
Reliable Systems – OLTP, DSS (database transaction systems)
SSD Endurance needs standards
All current ones are inadequate: ignore IO block size and data retention (1yr min)
Only OLTP-2 can last for 3 yrs w/o SSD replacement, not other apps!
Mail, text search, decision support, OLTP-1 all fail BUT change assumptions and derive endurance experimentally.

Brute force: random/sequential writes to check OEM spec. Result spec very conservative.
Write amplification model graph.
Data Retention in the Cloud is days not weeks: data is replicated across multiple servers, servers always on.
Question: Can we push MLC SSD beyond per-spec 100% media wear? IE increase P/E cycles/cell?
Answer: Yes, but answer detail is not known: Need S.M.A.R.T. counters: correctable ECC errors and free/retired blocks.

Must Haves: % Media wear, host writes (GB)
Like to Haves: free/retired blocks, FTL writes, ECC corrections
Also Must Have:
 - No endurance or EOL throttling
 - Secure erase
 - TRIM command

Raymond Solone - Marketing VP STEC
SSD Solutions as a Catalyst for Evolving Data Center Requirements
Summary: Accelerate Access to Data by Auto-Tiering, SSD caching SW, PCIe solid state accelerators, lower cost with eMLC NAND [Marketing pitch for eMLC, STEC Controllers, S.A.F.E. and CellCare—RD]
 - How do we drive data storage efficiency: More and Now
 - Consumer grade MLC is inadequate; need enterprise grade MLC or eMLC
 - Consumer 20GB/day, Enterprise 8TB/day
 - Write full capacity of drive 10x/day, every day for 5 years
 - eMLC NAND 10-30k write endurance, plus controller ability- incl. extreme ECC ➔60k+ writes/cell
 - 4th gen controller announced today by STEC; tradeoff slower erase time
 - CellCare Technology for endurance; S.A.F.E. (RAID) technology
 - Accelerate Access to Data
 - Auto-Tiering, SSD caching SW, PCIe solid state accelerators
 - Reduce costs by using the right storage for the right data

Esther Spanjer-SMART Modular Director SSD Marketing
Differentiation in the SSD Market
Summary: Can use MLC (vs. eMLC) in the enterprise with the right Controller/FW.
 - $30/GB in 2007
 - $1-$1.50/GB not that far off
 - Higher endurance MLC usable in the enterprise
 - Trade-off retention (1 yr not needed) for endurance
 - eMLC 30k P/E cycles (due adaptive controller)
 - Going to SSD optimized storage architecture
 - 1.6TB 2.5" drives today
 - SMART Modular, STEC and Anobit have announced products that overcome MLC flash endurance limits
Adaptive Flash Management, Flash Guard, etc. is able to convert MLC to eMLC?
SAS interface growing in importance
Hockey Stick growth in coming years: ~12M units/yr by 2015?

Panel:
Controller must be optimized for specific media-Raymond
Tier 1 OEM support takes almost as many people as SSD development- Esther
Cloud server $2000; eMLC too expensive – Badriddine
Storage Infrastructure needs reoptimization for SSDs – Esther
Write logging necessary for Random IOPS- Badriddinne

Forum F1A Pairing SSDs and HDDs in Computers
Andrew Ku - Tom’s Hardware: Consumer & Enterprise Perspectives
Summary: Consumers not adopting SSDs due to cost and enterprise due to limited reliability
data and Cost.
Editor, Bestofmedia Group
aku@bestofmedia.com, 661-412-2870, Besofmedia LLC, Culver City
Product evaluation person
Cost is major issue
Intel Ipeak Whitepaper 2011
Consumers willing to pay for performance, but only slight premium
Consumer IO shifting toward video: Intel QuickSynch Architecture, Global Internet video
40% of internet Traffic
Desktop: Tiered vs. Caching
Notebooks: usually only 1 drive slot
Consumers don’t care so much about ruggedness—most backed up to cloud
Performance primary motivation for SSD adoption
But long term Media Reliability not well understood: FW critical
Drive tester passes drive, but doesn’t work in system
Replacement rate study on web site: SSD data not available beyond 2 yrs; linear model
is graphing assumption, not supported by data
Substitution effect: 1 SSD replaces 4 HDDs lowers effective failure rate
HDDs fail more gracefully
SSD failure is more binary
Forget RAID; replicate data 3 times a la Google File System
Enterprise adopting with caution, waiting for long-term reliability data
Primary barrier to adoption is COST
Data Center benchmarking varies with application
Caching is fire and forget, but only improves reads; writes limited by HDD speed vs.
tiered storage which improves both R/W

Charles Brady Foster – Intel, Client Side
SSDs and Caching in the Client Segment
Summary: Need to pair SSD and HDD to look like single drive with automatic SSD cache
management but with GUI to manage.
Caching Configuration – Paired Storage
(similar to nVelo Dataflex)
SATA HDD + SATA SSD to look like single C: drive; seamless to user, improve system
responsiveness by caching to SSD, lower average power consumption
GUI for user to manage
Ability to enable/disable caching as necessary (mainly to substitute new components)
Cache asymptote 16-29GB; therefore SSD311 is 20GB
Cache size option to use remaining partition as OS recovery or?
Significant performance and power improvements
Intel “RST” technology

Q&A
SSDs may eventually replace HDDs in some consumer applications; not soon
Google docs and iCloud may limit local storage demands
Paired storage just allows another cost tier

KN1: Yoram Cedar EVP & CTO SanDisk
Cloud growth and Consumer use affecting demand
Summary: Healthy demand growth requires continued scaling to have matching supply. Simple scaling approaching asymptote and will give way to 3D structures.
[Enterprise and Client]
33% of NAND bits in market in mobile devices in 2015
15% in tablets in 2015
25% in SSDs [7M in enterprise in 2015]
26% Other established end markets
In short, healthy demand growth
Supply Growth
Flash scaling reaching asymptote: Therefore supply growth rate lower, also market larger than in past so % increase take more capital and equipment
Limitations in flash scaling physics require adaptive management controllers
Therefore moderate supply growth with solid demand drivers
Forward thinking
One more immersion lithography scaling after 19nm
Therefore vertical NAND to re-use FAB resources and current lithography tools
3D RRAM shows best promise for a scalable post-NAND technology—will require EUV tools
23% CAGR for flash vs. 4% thru 2015
In future, 64Gb and 128Gb dice will be available from various vendors

KN2: Eric Kao Memoright
The age of application specific SSDs
Summary: HDDs are simpler and more stable than SSDs but are tailored to specific applications. SSDs need to be too.
What makes SSDs more application specific than HDDs?
FW defines personality
4 case studies
No one talks about application specific HDDs
HDDs more stable than SSDs
SSD latency a very complicated picture
Personality of SSD must match demand from host
SSD is actually a large array of drives with 100s of flash chips: job of controller is to maximize utilization-performance
Conflict
Flash blocks like to be written in full due to block erasure nature,
But interleaving scheme likes to write across as many blocks as possible, thus creates fragmentation.
Computation time required to find block to be erased/recycled.
Case 1 Video editing
HDD and SSDs give similar performance after SSD cliff
Case 2 Main Stream PC
Bench mark with PC Mark Vantage 3
Wide spread of latency OK
Case 3 RAID Array
Random IOPS, narrow spread latency, high reliability and endurance
Low write amplification
Case 4 Linear Drive (tape substitute)
Pure sequential write by super blocks, random page read, high MTBF
Case 5 Tablet PC
Answers TBD due varying workloads
BER vs erase cycles
tPROG vs P/E cycles
Change file system structure to favor flash?

KN3: Glen Hawk Micron
The Alchemy of NAND flash
Summary: NAND is approaching wall [asymptote]; need to go through or over with 3D processes and ultimately PCM.
Newton As alchemist; good from pursuit of impossible
25.7 Exabytes 2000-2010 shipped
57.8 EB 2011-12
Micron very happy about cloud—due potential data center growth
ClearNAND storage on PCI card
Memory wall – plan to jump over wall (or open door)
Think intelligently (getting full performance from 20 nm NAND is challenging)
Embedded MMC is fully managed solution,
ECC free,
System level (SSD)
SATA and SAS are just beginning ➔ PCIe, etc.?
Today’s NAND is 2D: 3D NAND Micron is working on is solution— picture
3D NAND when first deployed may hav 10k e- per gate vs 20!
In initial designs
Relaxed design rules
Ancillary functions smaller part of die
Smaller die size
Capacity boost/cost reduction
PCM also in future
3D is a couple of years away from production

Session 105 SSD Testing and Benchmarking
Marty Czekalski, STX
Summary: Current SSDs have many controller/FW related artifacts and need extensive and proper benchmarking/testing to verify application suitability.
Use cases
Persistent Storage
Cache Extension (L3 Cache)
Traditional Tools
 SNIA PTS
 IOMeter
 Database
 Office
 SPC-1C (small systems or individual drives); Storage Industry De Facto Bench
Mark
 Proven
 Sustainable
 Repeatable
 60% writes, 40% reads
Audit of other drives “SPC-1C-like”
 Precondition to steady state
 SPC asks for 8 hour pre-run now
Client drive 2.5ms @ 150 IOPS; another 2.5ms @70 IOPS; Another took a 4 hour “rest”
Notebooks have bursty workload which enables use of these drives; enterprise demands
SPC testing over extended periods of time (artifacts at 3-5days)

Easen Ho, CTO, Calypso

Summary: Testing is essential to verify SSD functionality. Some emerging and potential tests are reviewed.

Difficulties
- NAND SSDs are complicated (controller and FW)
- Difficult to get people to agree on tests
- Write history: how much written and where
- Where is data currently written
- Nature of data
- 100% (user) real world, not very useful because difficult to generalize
- Trace based capture and playback
- Trace based playback: AnandTech Storage Bench, Drivebench
- Scripted application playback tools: Sysmark, PCmaRK
- Synthetic Stimulus: Calypso CTS, SNIA work in progress,

SNIA SSS V1.0
- Purge
- Set Conditions
- Pre-Condition
- Run until Steady State
- Report format

Some Emerging Tests:

Demand Intensity:
- Vary total outstanding IOPS: RND 4k writes

Response Time Statistic:
- Response Time Histogram
- RND 4k writes until Steady State

Cross Stimulus Response:
- Write SEQ128K; Sw to RND4K; then back to SEQ128K
- Long Recovery Times
Idle Recovery: (garbage collection metric)
RND4K writes then idle for various periods then resume

Other potential tests
- Energy efficiency
- Data compressibility
- Enterprise workload

Doug Rollins, Sr. Applications Engineer, Micron
Summary: SSD performance is time and history sensitive. Perform testing in a consistent manner to get consistent results [Simple benchmarks may not reflect real world workloads and consequent performance—RD]
 - Performance varies with time but approaches asymptote after some time
 - FOB, transition, steady state (SNIA PTS)
Enterprise Assumptions
 - Always full
 - Always being accessed
 - Decisions made on steady state performance
 - Steady state ≠ full drive ≠ worst case
Steady State from SNIA PTS
Full Drive Defined
Worst Case Defined
To get consistent results
 - Always start from a known fixed point
 - Always precondition the drive in the same way
 - Always stimulate the drive with a single, fixed stimulus until steady state is reached
Example test sequence for every stimulus of interest
 - Purge, SE, or LLF
 - Precondition
 - Stimulate until steady state is reached
 - All are measured full span
 - Ensure the host does not impede performance

Frank Shu, VP R&D, Allion Test Labs
The Myth of SSD Testing
Summary: Review of factors examined and data generated by Allion in SSD testing.
Factors
 - NCQ Queue depth
 - TRIM implementation: TRIM implementation can choke IOs
 - Honoring Flush- Not all SSDs with volatile write cache honor Flush
 - Differing power implementations: On-Off vs On all the time
 - Use temperature to accelerate ECC errors: most data miscompares occur below 25C or above 70C.

Session 10 Standards
Kevin Marks Principal Engineer/Technology Strategist, Dell and Peter Onufryki, IDT
PCIe as an SSD IF
[Pitch for NVME—RD]
 - Going from 2.5 to t to 8 GTps; low cost; power management incorporated
 - NVMe—NVM Express: Standardized drivers, consistent feature set, industry ecosystem
NetApp, EMC driving standard
NVM Express 1.0 completed March 1, 2011 nvmexpress.org
Windows driver in dev. (NVMe Spec
Queing Interface Command Sets (Admin and IO)
Commission Queues, Head, Tail

Harry Mason, LSI & Marty Czekalski, STX
SAS Anchors Enterprise SSD Adoption
[Pitch for SAS IF]
 SAS RAID outperformed PCIe drive (details?)
 MultiLink SAS coming

Jay Neer, Molex and Galen Fromm (HS signal integrity)
Connector evolution
[Review of Development Connector Status]
 The mating IF is fully defined
 The device side connector mounting is undefined
 SAS 3 losses similar to 40G Ethernet

Roland Schuetz, MOSAID Technologies
HLNAND2 (up to DDR800)
[Pitch for MOSAID HLNAND2— RD]
 External IF chip to controller
 Synchronous clock
 1.2V IF
 MCP package die stack

Tutorial 1A Next Gen Controllers
Moderator: Chuck Sobey
Tong Zhang, Renssaler Polytechnique Institute
Self Healing SSDs
[Interesting Academic Research Project— RD]
 Scaling reducing reliability, increasing noise
 HDDs same issue; solution channel & controller: Need to understand details of device characteristics
 Then have device aware SSD system
 P/E cycling increases charge traps; reduces noise margin until ECC tolerance limit is reached
 Two trap types: Oxide trap, Interface state trap (recovers over time and at higher temperature)
 Explicitly Leverage this wear out recovery phenomenon in FTL: rethink over-provisioning and temp
 Solution: Put heater under flash dice. Before heating move data to backup. Sequence recovery
 Modeled to investigate potential
 Takes significant power to achieve high temperatures
 3.5W for 200C and 35 min to recover 80% of IF traps (5W for 250C)
 Backup impact on performance can be minimized by doing during idle times (halt during IO request)
 DiskSim to simulate system operation: impact on system performance minimal with small granularity of backups/heatups
Kent Smith, Marketing, SandForce

Garbage Collection, Foreground vs. Bkgd

Summary: Effect of TRIM command and “DuraWrite”.

- Wikipedia Garbage Collection article pictures
- OS deletes file but doesn’t tell drive until overwrite command
- Result: increase in Write Amplification: Soln—TRIM Command
- TRIM command sent at point of file deletion
- Prevents GC on invalid data
- Increases free space known to SSD controller

TRIM Benefits
- Higher throughput
- Improved endurance
- Lower WA

Doesn’t work behind RAID

Example
- DuraWrite: SandForce’s proprietary lossless compression improves free space
- Background GC moves “soon to be deleted” data which may impact performance
- Foreground GC with TRIM higher performance

Ariel Maislos, President and Founder, Anobit

New Era in Embedded Flash

Summary: The reduction in process node is driving exponential growth in ECC sizes and complexity required. The effect of managed and half-managed flash on controller architecture and capability.

- Editor for 802.3 Ethernet standard
- Chart ECC, P/E cycles vs process node
- Exponential curve in ECC complexity required
- Architecture is changing: Application controller no longer directly connected to raw NAND media
- Half managed (EZ-NAND, Dual DDR) or Managed NAND (SATA, eMMC, UFS) [PCIe can be either]
- Dealing with raw NAND on system side is too complex
- Q. Clear NAND: below 30nm most NAND is half or fully managed

Marc Acosta, Marketing but Office of CTO, STEC

SSD Controllers for Enterprise

Summary: STEC rises to the challenge with proprietary technology.

- 8 patents, EE UCI
- Avid yachtsman
- Quote from IBM J R&D 2008 Rich Freitas: Issues with NAND Flash
- Write Performance Challenge
 - Log structured file system to turn random access into sequential access (Berkeley 1998)
 - DRAM Write back cache
 - Enable usage as Tier 0 storage

- Cost Challenge
 - 1 bit/cell SLC
 - Large geometry flash
 - FPGA based platform
- MLC issues: slow write, low write endurance higher BER
Solutions: interleave support, CellCare
Result: 5 yr warranty at 10x writes/day
Claim: MLC drives outperform many SLC drives
MLC challenges: high flash failure rate, data retention, read disturbance
Solutions: parity protected data, advance firmware
FPGA Challenge
 Changed to ASIC: advanced power management, advanced ECC (higher code rate)
 Outer layer CRC protection (appended on receipt from host and checked on return to host)

David McIntyre, Altera
Flash Controller Solutions and Programmable Technology
Summary: PLDs offer flexibility in design needed in rapidly changing market.
 PLDs – CPLD & FPGA
 Lower Risk, faster time to mkt
 Being used today in 100’s k unit applications
 Uses 28-22 nm process nodes vs 90nm for ASIC
 May use High Performance or Low Power platform
 PCI gen 3 and SAS/SATA 6G support available
 Soft vs Hard IP: Hard improves device speed and BW of IF
Storage Target Apps
 Flash Cache/SSD
 RAID Bridging
 Bride Plus
 ASIC Replacement
Flash Controller Design Challenges
 Emerging Memory Types
 ECC going to BCH
 IF Support PCIe, SAS/SATA, FC, IB
Examples
 Violin
 Denali
28nm today
Uncertainty and Change favors PLDs
Many Flash Cache Applications
200MHz clock speeds at 28nm

Eitan Yaakobi, Grad Student [now post doc] UCSD
ECC Codes for TLC Flash
Summary: A new ECC encoder-decoder scheme for TLC is proposed.
 Very bright personable guy, new PhD
 New proposal for TLC ECC beyond BCH, LDPC
3 pages from each level set MSB, CSB, LSB blocks
Experiment: erase, write, read
MSB pages have best error rate within block
Instead of throwing high error block away, store only 2 bits in cell or 1 bit
Errors are corrected independently
Goal: correct errors in a group of pages together: if a cell is in error, then with high probability one of the bits in the cell is in error
KN4: It's Not Your Father's Hard Drive Or Is It?
John Scaramuzzo, SMART Modular

Summary: To get further market penetration in the enterprise SSDs must use cheaper MLC media. To do this and have sufficient endurance, MLC must be operated beyond the manufacturer’s specification using additional signal processing and ECC in the controller.

- Tremendous improvement in IOPS of SSDs creates a new storage class that is just being implemented in applications: Examples
- Barriers to wider adoption: infrastructure and cost
- Read mostly SSDs are driving boot and entry server adoption
- 7-10 drive writes/day is mainstream workload; SLCs too expensive, eMLC OK
- eMLC is screened and tested differently but adds cost
- Solution: use plain MLC flash and increase endurance enough to work in enterprise
- As technology node gets smaller, additional ECC is not enough
- Solution: additional signal processing with added ECC
- Take advantage of population statistics
- Operating beyond raw flash spec by tuning flash parameters throughout the SSDs life
- Parameters: ...
- Q. How do you handle differences in suppliers products; no standards? No good answer.
- Need understanding of products and good test strategy for result
- Q. Certification of SSDs? Standards helpful, but too many market application variations.

KN5: Mythbusting Flash Performance
Bill Nesheim, VP Solaris Platform Eng., Oracle

Summary: SSD has great performance but the technology is immature. There are issues with performance, performance predictability, response time predictability, R/W asymmetry, reliability, and standards. [This was probably the best keynote of all, since it took real user data and gave a call to action and do list to the SSD manufacturers—RD]

- Ex-SUN
- Is there anything beyond IOPS
- Oracle flash integration
- Half of Flash $ market in enterprise, IDC; 51% CAGR thru 2014
- ZFS filer uses flash, OLTP and DB run faster with flash, customers wan SSDs, PCIe cards and flash arrays (easier to service, hot swappable)
- Flash in all Oracle systems (improves data waits, particularly read waits): Exadata, Exalogic, and ZFS Storage Applicance all have designed in flash
- DB Flash Cache—principally improves read performance
- Customer Example: SQL DB access 3M waits in 15m = 9.5 hours actual wait time
- Deployment issues: Can be slower than with HDDs; requires engineered system approach
- 5.3 TB PCI flash to 100-336 TB HDD in Oracle Exadata DB server
- Issues
- Substantial Performance Variability, especially 100ms to 1s outliers; low as 54 IOPS;
- R/W BW variation: can be worse than disk!
- Per slot power limitations
- Challenging environment for supercaps and batteries
Unpowered data retention constrains use as archival media
Varying and unique failure modes
It’s really not just IOPS
Overall response times important
Limited application threading
Outlier response times killer
Need:
 More predictable performance
 More predictable response times
 Less R/W assymetry
Example of lousy all write workload
Basic parallel computing problems
When IO is slow to return is like accident on 101, queue builds up with repeated requests for same data
Difference in real performance due to slowest 1% of IOs
Example of 2.5x impact on volume of flash needed in system
MLC more expensive than SLC from a $/Endurance view
Device with embedded service policy can be a killer

Issue: standards or lack thereof
Current compliance isn’t

Device should correctly report Read Capacity or ATA Identify Device correctly

Conclusion: Technology Immature
 Performance variability and predictability Issues
 Reliability and Availability Issues
 Standardization needed

KN6: Emerging Challenges in NAND Flash Technology
Seaung Suk Lee, VP Flash Product Planning, Hynix
Jeff Janukowicz, IDC intro
Summary: Review of NAND flash technology roadmap and changes needed. [This was an excellent technical presentation with many useful slides but as of 8/15/2011 the presentation has not been posted online—RD]
 Market overview $25B this year 29B in 2014
 Mobile, Tablet, SSD major growth areas; biggest SSD
 Going forward Increasing performance and reliability require controller+SW advanced
 Scaling limitations:
 Physical: patterning, structure formation (FG,CG,IPD,...)
 Electrical: interference, capacitive coupling ratio, # of e- in FG, dielectric leakage
 NAND program speed strongly related to bit line and word line loading
 WL matl ➔ W (tungsten), was Co or Ni silicide, previously polysilicon
 WL space ➔ air gap to replace low-K dielectric
 BL matl ➔ Cu
 BL space ➔ air
 Too few electrons in FG with scaling
 Vt distribution now has overlap in smaller geometries
 E2NAND has embedded ECC
 Future Technology
Planar FG with High-K dielectric; problem dielectric not stable
3D structure Options:
 - Samsung and Toshiba announcements in 2009
 - To overcome deep poly-Si channel requirement change to horizontal
 - Dual CG and surrounding 3D FG cell
 - Epi Si Pillar 3D structure
Good final comparison slide of various 3D structural announcements

KN7: The Next Frontier in NVM Performance
Knut Grinsrud, Intel
Summary: To get the next 20x in storage performance need NVMe, much lower power. Knut has a lab HW/SW demo running.
 - Intel Fellow leading small SSD architecture group
 - SSDs have given us 20x in storage performance
 - The next 20x?
 - 300 simultaneous videos at full HD videos in single display browser (1.02M IOPS)
 - Enablers
 - 8x PCIe Gen3 physical IF
 - NVMe logical IF (nvexpress.org)
 - New driver stack for 1 M IOPs
 - Low Power another requirement
 - Thus need 20x lower power state than current (5mW in 50ms of resume latency)
 - between current low and off states (graph of resume latencies and lost time)
 - New SATA draft low power state proposal
 - NVM + HDD graph
 - PCIe + AHCI for high performance for client in addition to PCIe + NVMe

RRAM Session 205
Summary: Various new and emerging RRAM technologies are showcased. [Most are still in the lab, a few are pre- or very small volume, early production. New system solution, signal processing and ECC are needed for these new memories and these will also take time to achieve commercialization.—RD]
Moderator: Alan Niebel, Web Feet
RRAM technology variations
Narbeh Derhacobian, Adesto Technologies
CBRAM Memory
 - Conductive Bridging RAM (Adesto founded 2007)
 - Apollo 1st commercially available ReRAM Memory (eng samples now, customer samples 2H2011; 1Mb device)
 - Like SONYs technology
 - Process variation can vary device characteristics over wide range
 - Now >90% die yields; some 100% yields with built-in redundancy
 - 34 patents issued, 45 licensed patents, 42 in process
 - Done in 2 different CMOS fabs with no cross contam.
 - 130 nm node

David Eggleston, Unity Semiconductor
Emerging Memory for the Cloud
 - CMOX – insulator and conducting metal oxide
 - 2015 Cloud requires Millions of IOPS
Cloud Attributes
- Tb on single chip
- 100’s of MB/s (500 R, 200 W)
- Easy ECC
- Low Cost
- CMOX 100x faster than NAND
- PC 8F cell size issue
- MRAM too expensive
- RRAM not stacking yet, high write current, reliability
- Memristor?
- NAND slow and hard to use but capacity and low cost
- Two layers demonstrated
- 10k to 100k cycle life goal of current
- PCRAM has missed product window!
- Paper on physics from 2008 downloadable from web site
- Commercialization in 2014-2015

Janice Nickel, HP Labs

Memristive Memory
- Heads JV w Hynix
- Leon Chua at UCB: flux, V, q, i
- Flux to charge relationship
- Pinched loop iV curve
- Pt. TiOx(x=2), Pt sandwich
- Get this presentation
- Endurance to 10^{12} cycles at Samsung
- 100’s of ps to switch; 10+ years life;
- Hynix partner at 50nm node
- 5 levels shown in lab in single cell
- Materials used determine retention
- TaOx paper to be published
- 1H2012 should see first real devices; Commercialization in 2014?

“Amigo” Keiici Tsutsui, Sony

Characterizing ReRAM for NVM Cache Applications
- Structure:
 - CuTe = Cu+ source layer
 - Few nm of insulator (Cu filaments grow in this)
 - Lower electrode
- Demonstrated: 2.3GB/s read, 216MB/s write, 1M program cycles
- Goals:
 - Cost ~ same as DRAM (6F^2)
 - Capacity ~ same as DRAM
 - Read 5GB/s, Write 500MB/s
- 4 levels of resistivity reported 2007 but not commercially

MRAM Session 208

Summary: Various new and emerging MRAM technologies are showcased. [Many, like the RRAM or ReRAM are still in the lab, a few are small volume, early production. The exception is Everspin which is projected to ship 3M units this year.—RD]
Toshiba and Hynix Agreement on STT-MRAM, Grandis Acquired by Samsung July 22nd

Rajiv Ranjan, CTO, Avalanche Technology
Ex-STX, Komag
Founded 2006, VC
Patented low power MTJ plus patent pending cell design plus systems design approach
Switching demonstrated at 300ps, but Perpendicular below 1ns
Deposit MTJ’S as part of back-end process
SRAM replacement; 152 cell size in 64Mb chip using 65nm CMOS to be first commercial chip
Thinking 8 2 possible
3D Stacking available

Barry Hoberman, Marketing, Crocus Technology
The path to Gigabit MRAM
Closed $300M deal with Russian company to build fab there
Magnetic Logic Architecture—Thermally assisted switching (TAS)
Self differential sensing (allows broad range of junction resistances and resistance deltas)
High temperature operation
Simplified processing
Broader yield curve
No magnetic anneal
Reference pinning layer with its Pt gone
NAND w 8x MLC And 2 layer structure to offset 25 2 cell size
Zero Knowledge Proof secure implementation

Steffan Hellmold, Everspin
Industry first and leading supplier
Shipped 3M pieces, will ship >3M in 2011 alone
600 active patents and applications
Spin off from Freescale in 2008
50ns R/W latency
Cycling endurance 10^{15} cycles
> 20yr life
Instant on/off 50us, 50ns
Temp range -40 to 150C
Ultra low radiation induced SER
Easily integrates with CMOS logic
History 4x every 12-15 mos
Toggle MRAM TAM $500M of total $80B memory market
Markets: Industrial, Datacom, POS, Energy, Transportation (Auto and aviation), Storage and Servers (metadata, SRAM replacement)
Not shipping STT MRAM yet, but plans on track

Jay Kamdar, MagSil
MIT roots; Key HDD licensees in last 2 years
Solves write current and scaling(180nm to 18nm) issues
Optimized magnetic stack
Fabless IP company
MTJ is used only as sensor—has storage media
10 f² cell
Commercial in 2013 from consumer OEMs

Steve Clidakis, Spin Transfer Technologies
skipped

New NVM Technologies Session 303
Summary: More alternatives to MRAM and PCRAM are reviewed.
Moderator: Jim Cantore

Greg Atwood, Senior Fellow, Micron
Current and Emerging Memory Landscape
[Good overview of the flash roadmap and PCM technology—RD]
- Memory moving from support role to a defining system role
- Scaling planar NAND is becoming more difficult: few electrons, capacitance limitations, tunnel and interpoly charge retention, voltage limitation, etc.
- Storing 10 electrons/state in MLC At 20um
- No brick wall but increasing complexity
 Good Roadmap slide [not available as of 8/15/2011 -- RD]
- 3D options: Deck-by-Deck, Vertical NAND (most work here), Crosspoint
- True NAND successor needs to
 - Be MLC capable, 3D stackable, simple process flow, scalable, reliable, performance and power
- NAND successor not the only target
- Storage Class Memory
- Explosion of new memory concepts – good summary slide [also not available as of 8/15/2011 -- RD]
- PCM
 - Xtalline low resistance phase, amorphous high R
 - Cell 1 diode, 1 resistor
 - More attractive as cell size shrinks due smaller volume of material heated
 - Good for execute in place (XiP) semi-static data
 - Cross point memory simple 4 f² cell divided by number of layers plus allows peripheral elements underneath all
 - Example PC-base x-point memory at 64Mb

Thomas Rueckes, CTO, Nantero
High Reliability Carbon Nanotube NRAM
- Post NAND, post DRAM, NRAM for NVM (low cost, reliable)
- Scalability to <5nm, low write i, Dense 1T1R & 1D1R, MLC capable
- Founded 2001; sold govt. business to Lockheed Martin in 2008
- Now development and IP licensing model with unannounced commercial development partners
- W and TiN used with C nanotubes; simple well understood material
- Set is electrostatic (low R), Reset is phonon heating driven (high R) using short, high rise time V pulse (stable at 300C for hours)
- Spin on colloidal CNT, trace metal clean, metalize, patterned currently with 193nm dry and immersion lithography, CNT integration temperatures 425C (works to 700C with W interconnect), CNT and metal RIE etch to complete pattern
140nm 4Mb sample devices available
100kohm on 100Mohm off
Data retention 10yrs
.01fJ/nm2 switching energy
Activation energy 4.5eV allows stability at 300C for many hours
Empirical data for 1B cycles expect unlimited
No HV transistors required due low switching currents
20ns writ and read

Alex Zettl, UC Berkeley (LBL Grad Student, advisor Alex Zettl)
Billion year, Ultradense Memory
[Years away from potential uses—RD]
Works with grapheme and CNT in nano-electromechanical systems (NEMS)
Position based storage a la Abacus
Fe Nanoparticle sliding within CNT (Pd contacts on Si3N4 base on Si
100 nm long CNT 10=-20 nm wide, voltage 1.5 to 1.7 volts to move 25um/s
Del R/R ~50/5600 ohms or ~1%
Del Energy ~1.5-1.7 eV resulting in dwell time fo >10⁹ years at 300K
Aligned CNT “forest”
Getting Fe into CNTs is challenging
Mechanism of motion: Electromigration or e- wind?
R Effects: intershell coupling perturbation, geometry effects, e- resonance effects?
Research continues
Multistate, CNTs with fewer walls

Luc Thomas, IBM Almaden
Racetrack Memory
Stu Parkin’s group
Now working on Horizontal Racetrack Memory
Both soft magnetic material in plane and hard magnetic materials in perpendicular mode
STT sensor: change in spin angular momentum of electrons moving thru wall can move domain wall
MTJ (TMR?) sensor to sense direction of magnetic moment
10⁸ A/cm² 12umx150nmx20nm NiFe nanowire shift register; del R 0.2 ohm
Hall bar
Del R/R 0.1/1220; Hall bar better noise level
250uA switching current
2ns write with <4pJ, sub-10ns readout
Working on vertical racetrack

Future of PCM Session 306
Summary: PCM progress review
Chair Sean Eilert, Micron

Greg Atwood, Micron
Condensed Reprise of previous sessions presentation

Minghai Qin, CMRR UCSD (Grad Student)
Constrained Codes for PCM
PCM allows single cell access vs NAND string
PCM ~10^8 cycles
Endurance ~ 300 yrs
Heating affects cell performance and adjacent cells
Therefore need Modulation code with time and space constraints
Suggested coding to limit single cell consecutive writes, writes to consecutive cells, total cell rewrites (α, β, γ)
To be Published in Globe Com 2011
Some results related to write once memory codes

Mike Strickland, Altera
Read latency close to DRAM
Write 10x worse than DRAM but 100x better than NAND
100x better endurance
Low idle power
Cache for Enterprise either as a hybrid with flash or later As cache
Initial hybrid uses: Metadata/logs, RAID parity, write thru cache
DRAM cache in conjunction with PCM?
Today useful for mobile devices
Shorter term – hybrid
Longer term – general cache as price comes down and capacity goes up
Issues: Uncertain forecast, differentiation, high ASIC development costs

Gary Kotzur, Dell
No slides; better not to leave paper trail!
NAND running out of steam; performance (read and write latency), endurance
Important system level TCO metrics:
$/IOP, W/IOP, \$$
Near term PCM Issues/Possibilities
Pros: Write endurance, high read performance (low latency); No erase before write (no GC!—especially important for RAID)
Cons: Power, Write power
Write back cache; Hybrid
Longer term
Need to reduce power to allow higher density with reasonable power envelope
Write and read asymmetry 20x today, need 4x
Need densities approaching flash
Need cost approaching flash
Less controller management is attractive to reduce latency outliers
Larger page sizes of NAND are unattractive; smaller blocks!
Initial apps OLTP, DSS, Financial, Oil & Gas
Latencies induced by “stacking of devices” can be reduced by PCM
Panel Discussion: Scaling will benefit power due less joule heating required for write
Consistency in performance is very important (latency outliers, GC)
Smaller granularity also advantage
WA=1!
Energy/current densities not near any material limits
Cost per bit
45nm 1Gb is state of art PCM vs 20nm 64Gb NAND
More targeting DRAM than NAND today
KN8: How Enterprise SSDs Can Revolutionize the Data Center
Scott Stetzer, VP Technical Marketing, STEC

Summary: Demand is great. To achieve necessary cost, must use MLC and TLC. The controller is the key to this along with auto-tiering SW.

WD, Maxtor, Quantum
Change in last 3 years from 300 to 80k IOPS, Tier 0 storage, SSDs main emphasis
Auto tiering SW
Bringing MLC into enterprise just beginning; needed for cost
Controller [and FW] is key to intelligent system use of NAND flash
Technology shifts drove out suppliers in HDD markets
Good slide showing HDD vs SSD supplier numbers [not available as of 8/15/2011-- RD]
Increase in technology demand with decreasing node size will shake out suppliers unable to keep up with controller technology demands
e-MLC gets endurance advantage by slowing down—wrong direction
Need to use ordinary MLC with capable controller
1.8ZB discussion [cribbed from EMC study]
$49B server platforms, $28.7B storage platforms (IDC when?)
Substituting SSD for HDD requires auto tiering need similar caching app for servers; accelerating time to data from 10’s of ms to 100’s of us; goal 2-10x performance improvement at ½ price [assumes replacement of 600GB, 15k rpm enterprise class drives with near-line capable 2TB, 7200 rpm drives!!]
Modernize SAN using auto-tiering SW again replacing most 15k drives with 7200rpm 2TB ones.
SSDs are catalyst for Cloud
Enabling all SSD storage platforms: lower cost thru MLC; TLC! Need $1-1.50/GB and tiering using mix of SLC, MLC, TLC

KN9: SSD vs. HDD vs. Hybrid: It's Not Who Will Win, But Who Should Win
John Moon, Sr. Director Emerging Systems, Seagate

Summary: HDD and SSD manufacturers need to cooperate to define standards, OSes, etc.
1M Hybrid drives shipped
Lead designer for Momentus XT
Each type has advantage for specific market/application
Work together, don’t re-invent the wheel
 1970 ECCs
 1985 DRAM buffers
 1986 Read retries
 1992 Auto reallocation of bad sectors
 1995 S.M.A.R.T.
 2000 Background activities: offline scan, data refresh
 2009 LDPC
Demonstrate the truth: benchmarks should reflect user experience
Benchmarks that reflect end user experience needed; Sysmark not good enough
Need to be easy to understand
System independent?
Repeatable results
Your friend can be my friend; we all need to talk together
 TRIM works with Hybrid but Microsoft didn’t work with HDD folks
 TRIM would also help HDD
 RPM detect

© 2011 Research Development Consultants Inc. Page 20
Defrag uses varies across all three
Hints for ordering writes
System pre-fetching
Hibernate, Sleep, Resume
File aware information
Can we share the same menu?
Reliable MLC and TLC
Common interface
Common error handling: ECC retries, signal proc
Speed Capabilities; page sizes, # of planes, program and erase times
More work together is needed
Good quote:
If you want to be incrementally better: be competitive. If you want to be exponentially better, be cooperative. Source unknown
John.Moon@Seagate.com